
t. J. Ih.at  Mass Transfer. Vol. 26, No.  2, pp. 301-302, 1983 
�9 inted in Great  Britain 

0017 - 9310/83/020301- 02 $03.00, 0 
Pergamon Press Ltd. 

SHORTER COMMUNICATIONS 

A SPECIAL CASE OF D I F F U S I O N  W I T H  M O V I N G  B O U N D A R Y  
C O N S I D E R E D  AS A PROPAGATING WAVE 

LOTtlAR SENF 

Isotopes Laboratory, Medical Clinic, Medical Academy of Erfurt, GDR-5060 Erfurt, 
Nordh~iuser Strasse 74, German Democratic Republic 

(Received 13 April 1982) 

NOMENCLATURE 
J 

to, position of boundary; 
ao, position of boundary at time t = 0; 
A, area; 
c, concentration ofdiffusant; 
ca, concentration ofdiffusant at boundary; 
Coo, initial concentration in the first, limited medium ; 
co, initial concentration; 
D, diffusivity ofdiffusant; 
M, total amount ofdiffusant; 
q, penetration distance ofdiffusant; 
Q, total amount ofdiffusant normalized by area; 
t, time; 
e, moving velocity of boundary; 
x, distance. 

A PREVIOUS paper [1] we considered the diffusion of a solute 
)m a first, limited medium into a second, unlimited medium. 
le total amount ofdiffusant remains constant and is initially 
~tricted to the first medium. The boundary between both 
:dia migrates with constant velocity in the direction of the 
zond medium. Within the first medium, the diffusant 
mains equipartite throughout the equilibration process, i.e. 

c(x,t) = c.(t) for O ~ x < a(t). (1) 

steady-state within the second medium, the following 
ncentration profile applies (Fig. 1): 

c(t) = G( t ) / l  - x - a ( t ) / 2 " 5  for x > a(t) (2) 
L q J 

th 

a(t) = a o + vt 

d a  

dr" 

te total amount ofdiffusant, normalized by area, is given by 

gure I presents the corresponding relations :with increasing 
ae, the concentration profile advances in the positive x- 
�9 ection, whilst, because of the concomitant increase in 
ution, the concentration is fading more and more; at the 
me time, however, the decreasing concentration distribution 
the right of the boundary retains its shape. 

lhese  circumstances and the postulate of equation (3), 
luiring the total amount of diffusant to be constant, are 
;en into account by the equations 

3.5Q 
c(x,t) = - -  for 0 ~ x < a(t) (4) 

3 .5a+q 

and 

3.5Q x > a(t). (5) c(x,t) = 3 . ~ a + q [ 1 -  X-qa(t)]2"5 for 

As may be verified by a simplecalculation,equations (4) and (5) 
are solutions of the homogeneous linear partial differential 
equation 

dc dc 3.5vc 
- ~  + VO-x-x + 3.5a + q = 0. (6) 

It is known [2, 3] that the most simple linear differential 
equation to represent a wave has the form 

dc dc 
~ t  + vT-- = 0, v = const. (7) 

OX 

For the initial condition c(x, t) = Co(X), this equation gives the 
solution 

c(x, t) = co(x-- vt). (8) 

This solution represents a wave travelling with constant 
profile and with the velocity v in the positive x-direction. 
Figure 1 suggests that a similar equation could fit the 
experimental results, after additionally making allowance, of 
course, for the increasing dilution. The introduction of the 
attenuation term 3.5vc/(3.5a+q) into equation (7) is made to 
conform with this requirement and permits a complete 
description of the concentration profiles to be made. The term 
3.5vc/(3.5a + q) also makes sense physically: the attenuation is 
greater the faster the wave moves, and the greater the 
concentration is; on the other hand, it decreases as the 
boundary advances and with increasing penetration distance. 

It is essential that the concentration profile is not restricted 
to that given by equation (5), but beyond the boundary it can 
also be described by other functions, such as the steady-state 
solutions of the partial differential equations of diffusion. 

The present paper makes no statement on processes before 
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FIG. 1. Concentration distribution with moving boundary. 
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the attainment of steady state (during "swinging in"). 
According to Peterlin [4], the time necessary approximately 
amounts to 4D/v 2. 

Comparison of experimental concentration profiles (ref. 
I-1], Fig. 2) with values calculated from equations (4) and (5) 
shows relatively good conformity, at which, as in ref. [1], the 
time to reach the equilibrium has to be considered, as well as 
the fact that the precision of measurement diminishes with 
decreasing impulse count�9 

The occurrence of diffusion waves is of special interest for 
the co-operation of chemical reactions and diffusion. The 
present paper tries to extend the analogy between wave 
propagation and diffusion processes to the particular 
experimental case of diffusion with a moving boundary. 
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SOME C O M M E N T S  ON BECK'S SOLUTION OF THE INVERSE PROBLEM OF HEAT 
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NOMENCLATURE 

radius of cylinder or sphere; 
complementary error function ; 
depth of thermocouple below heated surface; 
least-square function; 
Fourier number, at/L 2 or ctt/a 2 ; 
Bessel function of the first kind of order zero and 
unity, respectively; 
thermal conductivity; 
thickness of slab; 
heat flux at time t~ = iAt; 
heat flux at time t~ determined by exactly matching 
the Ihermocouple data over r future times; 
constant value of heat over the time interval q to 
q+, that minimizes the least-square error function 
F,; 
radial coordinate, also the number of future 
temperatures used in inverse solution; 
temperature; 
computed temperature at time q and depth E 
below the heated surface; 
value of T~ corresponding to ~ ;  
initial temperature; 
time; 
heat-flux weighting factor for a thermocouple at 
depth E, see equation (20); 
coordinate; 
experimental thermocouple data at time t~ = iAt. 

Greek symbols 
A Fo, differential Fourier number, ctAt/L 2 or aAt/a 2 ; 
Aq~, step change in heat flux, equation (2); 
At, time increment ; 
Zxr r 1 6 2  ~ O; 
a, thermal diffusivity; 
2, dummy time variable; 
v, eigenvalue in equations (4)-{6); 
r temperature response of a body initially at zero 

temperature and subjected to a unit step in heat 
flux, also termed sensitivity coefficient; 

r value of r at depth E and time ti; 
$, function representing decay of temperature profile 

if future heat-flux values are zero, see discussion 
following equation (9); 

temperature weighting factor for a thermocouple 
at depth E; see equation (16). 

INTRODUCTION 

TIlE INVERSE problem of heat conduction is the determination 
of surface temperature and/or heat flux from an interior 
measurement of temperature. For those problems to which 
Duhamers Theorem applies, Beck [1] introduced a technique 
for using measurements of future temperatures that allows for 
smaller computational steps than those allowed in the earlier 
technique of Stolz [2]. This note presents equations that 
permit an alternative physical interpretation of the process of 
using future temperature information, and gives additional 
insight into inverse heat conduction problems. 

ANALYSIS 

Starting with the 1-dim. form of Duhamers Theorem, for a 
time-varying heat flux, 

T(x,t) = To+ r d2+ r  (1) 
" i=O 

where 

Aqi = q~-q i - t ,  qo -~ O 

and where r t) is the temperature response of a body initially 
at zero temperature and subjected to a unit step in heat flux. 
The integral term in equation (1) allows for continuous 
variation of heat flux with time; the summation term accounts 
for discrete steps in heat flux. Many analytical solutions for 
bodies exposed to a step in heat flux are available in the 
literature; four solutions for common 1-dim. geometries are 
presented below. 

Semi-infinite solid, flux at x = 0 


